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Analysis of Noise Upconversion in
Microwave FET Oscillators

HEINZ J. SIWERIS anp BURKHARD SCHIEK

Abstract — The upconversion of low-frequency noise in microwave FET
oscillators is investigated. The theoretical analysis is presented in two
forms, a general and a simplified one. The latter version yields closed-form
expressions for amplitude and phase noise, which are discussed with regard
to the physics of the upconversion process. Application of the method is
demonstrated with an example.

1. INTRODUCTION

FTER BEING ALREADY established as an im-
portant device for microwave amplifiers, both for
low-noise and power applications, the gallium arsenide
field-effect transistor (GaAs FET) has also been used in
oscillators to a steadily increasing extent during the last
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few years. When compared to other solid-state devices
suitable for microwave sources, the FET offers the
advantages of high efficiency and convenient biasing re-
quirements. However, considering the excellent noise per-
formance of FET amplifiers, the noise properties of FET
oscillators are only moderate. Therefore, transferred-elec-
tron oscillators are still preferred for applications where
noise performance is critical. ‘
The reason for the different noise performance of FET’s
in amplifiers on the one side and in oscillators on the other

. side has beer identified to be the strong low-frequency (or

1/f) noise of the device. This kind of noise is insignificant
in all linear RF applications like small-signal amplifiers. In
oscillators, however, since the FET is operated under
large-signal conditions, the low-frequency noise is upcon- .
verted due to the device nonlinearities and gives rise to
noise sidebands around the RF carrier signal in the output
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spectrum. This mixing process is the dominant noise gener-
ation mechanism in FET oscillators for offset frequencies
up to at least 1 MHz. Therefore, RF noise sources do not
contribute significantly to the close-to-carrier noise.

These results have been concluded from the frequency
dependence of measured phase noise spectra, which de-
crease by about 30 dB/decade within the resonator band-
width [1]-[3], as well as from direct comparisons between
low-frequency noise and phase noise measurements per-
formed on a number of different FET’s and the corre-
sponding oscillators [3]-[8].

The development of specific noise reduction techniques
for microwave FET oscillators requires a thorough under-
standing of the noise upconversion process. Up to now, the
only detailed theoretical analysis on this subject has been
given by Debney and Joshi [9]. In their paper, a combina-
tion of the FET and some feedback elements is treated as
an active one-port network. The 1/f noise, initially de-
scribed by a low-frequency voltage source in the gate
circuit, is converted to an equivalent RF noise voltage
source connected in series to the one-port network. The
relation between the two noise sources is determined by
means of a large-signal model for the FET. The resulting
network represents a negative resistance oscillator and is
analyzed using an extended version of Kurokawa’s theory
[10].

The large-signal model employed by Debney and Joshi
in their analysis is based upon the assumption that the
transconductance and the drain conductance are the domi-
nant nonlinear elements of the FET. This assumption
refers to the results of Rauscher and Willing regarding the
stmulation of nonlinear FET performance [11], [12]. On the
other hand, Pucel and Curtis [3] as well as Camiade et al.
{7] consider the transconductance and the gate-source
capacitance responsible for the noise upconversion, with
the latter element being the most important one.

To answer this controversial question, it is necessary to
include all nonlinear elements mentioned above in an
analysis of the noise upconversion process. Such a theory is
described in this paper. It is, moreover, in several respects
more general than the approach of Debney and Joshi.

After a short description of the basic oscillator model, a
general analysis of the oscillation conditions and the noise
upconversion process will be given. The results are re-
garded as a basis for computer simulation of arbitrary FET
oscillators. By introducing some simplifying assumptions,
closed-form expressions for amplitude and phase noise will
be derived, followed by a discussion of the main conse-
quences concerning the upconversion process. Finally, the
capabilities of the method will be demonstrated with an
example.

II. TuE FET OscILLATOR MODEL

The analysis described in the following sections is based
on the FET oscillator model shown in Fig. 1. The oscillator
is divided into a linear and a nonlinear two-port network.
The latter one contains the dominant nonlinear elements of
the FET equivalent circuit, namely, the gate-source capaci-
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Fig. 1. FET oscillator model.

tance c,, the transconductance g,,, and the drain conduc-
tance g,. The linear FET elements are combined with the
remaining oscillator circuitry and the load to form the
linear two-port network.

The nonlinear FET elements will be characterized by
expressing their instantaneous values as time-invariant
functions of the voltages v; and v,. This quasi-static
approach has been successfully used by Rauscher and
Willing to simulate the nonlinear performance of micro-
wave FET’s [11], [12]. If, from a quasi-static FET model,
time-invariant functions c¢,(v;,v,) for the gate-source
capacitance and i,(v,,v,) for the drain-source current
have been derived, the currents i; and i, are given by

i(1)= Cg[vl(t)’ v,(1)] g%ﬁ
ir() = ~ig[vi(t =), 0,(1)]

where 7 accounts for the channel transit time delay.
The transconductance and the drain conductance are
obtained as partial derivatives of the function 7 ,,(vq, v,)

iy [v(t—7),05(2)]

(1)
©)

gm(1) = 7, (3)
gd(t)= aids[ul(ta_v;")avz(l)] . (4)

The low-frequency noise of the FET is modeled as a
voltage source v, in the gate circuit. For a highly accurate
model, it might be necessary to introduce an additional
noise source, as indicated by recent experimental results

8].

III. GENERAL OSCILLATOR ANALYSIS

A. The Oscillation Conditions

To obtain the general oscillation conditions, v, is set to
zero. Then, for a stationary oscillation with frequency £,
the voltages v,,v, and currents i;, i, are strictly periodic
functions of time. According to the quasi-static FET model,
the same holds for c,, g,, and g,, which hence can be
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expanded into Fourier series

+ o0
cg(t) = Z } cgkeijOt

k=—
+ oo

Y e’ ™, g (1) =

k=—o0

+ o0

Y gae’ %!

(5)

The voltages and currents may be decomposed into static
and time-dependent dynamic components

() =V,o+5,(t), i,(t)=Lo+i,(1), »=12. (6)

In general, both the voltages #, and the currents i, consist
of a fundamental component at Q, and an infinite number
of harmonics. To simplify the analysis, it is assumed that
due to a properly coupled resonator the input impedances
of the linear network are low at all harmonic frequencies.
The harmonic components in 7, and i, will therefore
generate no corresponding voltages and #, and @, are
reduced to the sinusoidal fundamental. As a further conse-
quence, the current harmonics have no impact on the
amplitudes at the fundamental frequency and can be ne-
glected in the analysis.
If the voltages &, and currents i, are now expressed as

5,(1) = Re{V,e/%"} (7N

g.(1)=

i,(¢) =Re{Ie/%" } + (harmonic components),
r=1,2 (8)
then (1)~(8) yield

Il=jQO(CgOVl—cg2Vl*) (9)

— I, = g0 VWV, = 808"V + g 4oVy — 840V
(10)

where the asterisk denotes the complex conjugate.

A second pair of equations relating the complex ampli-
tudes I, I, and V,,V, is obtained from a matrix descrip-
tion of the linear network. For reasons of convenience
regarding the form of later results, the reversed form of the
voltage—current transmission matrix is used here

v, T, T V;
I 2 T21 T22 I 1
In general, the matrix elements are functions of frequency:
T;w = ];LV(Q)’ B, v =1’2'
In (9)-(11), the currents [, I, can be eliminated, and

after some rearrangements the following general oscillation
conditions are obtained:

(Tu + jQOCgOTIZ)Vl - jﬂocnglel* -V,=0 (12)
[T21 + gmoe_jQOT + 8a0T1n

+ jQchO(ngTIZ +Ty)— J'rogzgdszE] £

- [gmzejQOT + 8,111

+ jQchZ(gd0T12 +Ty)— jQOCgOgaQTlg] Vi*=0.

(13)
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For a given oscillator circuit, the functions T,,(Q) are
fixed, and (12) and (13) can be used to determine the
frequency &, and the voltages ¥}, ¥, for all possible modes
of oscillation. If ¥ and ¥, are written as

Vi=Wile™, V,=[V,le’® (14)

then one of the two phase angles ¢,, ¢, can be set to an

‘arbitrary value without loss of generality. Hence, the four

real quantities {V}|, |V,|, ¢, — @1, and @, remain to be
determined from the two complex equations (12) and (13).
It should be noted that all Fourier coefficients are func-
tions of ¥} and V.

Conversely, if for a certain desired oscillation frequency
2, the complex voltages V;, ¥, have been fixed, e.g., as a
result of an optimization of the efficiency by means of a
large-signal simulation of the FET, the Fourier coefficients
are known, too. Then, (12) and (13) may be viewed as
conditions for the matrix elements 7,,, which can be used
to synthesize a proper coupling network similar to the
procedures described in [13] and [14].

Equations (12) and (13) are necessary but not sufficient
for a stable oscillation. To ensure stability, one has to
check that any amplitude changes caused by disturbances
are limited. This test can be performed using the results of
the following noise analysis. ‘

B. Noise Upconversion

Provided that a stable oscillation with frequency Q, and
complex amplitudes V,V, and I, I, exists, the low-
frequency voltage v, in Fig. 1 will cause low-frequency
amplitude and phase fluctuations of the RF voltages and
currents.

The objective of the following analysis is to provide a
general method to establish the relation between the spec-
tral density of the noise source and the spectral densities of
the amplitude and phase fluctuations.

Since the noise voltage v, is small compared to the RF
voltage amplitudes, the relation between v, and the re-
sulting amplitude and phase fluctuations is quasi-linear.
For this reason, the entire analysis can be performed using
an equivalent sinusoidal voltage source at a baseband
frequency w

v,(r) =Re{V,e’'}. (15)

In the final step of the analysis, the results will be trans-
formed to spectral densities.

The dynamic voltages and currents may now be de-
scribed as the sum of a small baseband signal and a large
RF signal with simultaneous amplitude and phase mod-
ulation. Thus, the voltages &,, 5, are given by

Eu(t) =RC{V;;bejwt+ |V;| 1+ AlUVT(lt))e/[QOI'F‘Pu‘*'A(PV(I)]}
(16)
and
Av (1) =Re{AV,er'), Ap,(r)=Re{Aper},
v=1,2. (17)
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The peak deviations of both amplitude and phase are

small, so the modulation results in a single pair of side-

bands at frequencies £, + w with complex amplitudes ¥V,

and V,,

5,(t)=Re { V,,e/ + |V, |e/ @48 4 7 o) (@o— @)
+V, e/ @ty p=1,2,

(18)
These two representations of the voltages are related by the
following matrix equation [15]:

Ap,
1 | es® e~/
A []'ej% - je_”’”]

Vit

v

Y,

1
Ag,

i 4

v=1,2.

(19)
Neglecting the harmonic components, a set of equations
analogous to (16)-(19) holds for the currents 171,172 with
V.V, V.V, ete, replacedby I,,1,,, 1, I, etc., respec-
tively.

In (18), the baseband and sideband components are
small compared to the carrier amplitudes V;, V,. Therefore,
the time dependence of the nonlinear FET circuit elements
may be assumed to be entirely determined by ¥, and ¥V,
(and the static components). Hence, the Fourier expan-
sions (5) can be used without change. With this parametric
approach, (1)~(5) in conjunction with (18) and its current
counterpart lead to the following conversion equations for
the nonlinear network:

I,
Iy
Ilu
WCeo wCy wey
=7 —(Qo—w)cz‘l —(Qo—w)cgo _(Qo_w)c§2
(R +w)ey (90+w)cg2 (R + w)ey
Vie
Vit (20)
Vlu
Iy gm0 8mi &m Vige ™"
—| 4| = Zmi 8mo  Zm2 Ve (o= w)r
I2u 8m1 8m2  8mo Vlue—J(90+w)T
g0 8an 84 Vas
+ g8h 8a 8D Vi (21)
8n 8a 8aoll Vau

The matrices in (20) and (21) are well known from the
parametric theory of nonlinear systems.

The conversion equations for the linear network in terms
of the elements of the reversed voltage—current {ransmis-
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sion matrix are

Ve Ty, 0 0 iy =V,
il=1{ 0 ry; o0 Vi
Iéu O 0 Tllu Vlu
Ty, 0 0 I,
o T oo |[m| @
0 0 T12u Ilu
IZb T21b 0 0 Vlb“Vn
Iyi=10 Ty 0 i
I2u O 0 T21u Vlu
T22b 0 0 L,
+ 0 T2=£l 0 117 (23)
0 0 TZZu Ilu

where T,,, =T,(«), T,,, = T,,(Q — @), and T,,,=T,,(2
+ w) denote the matrix elements at the baseband, the
lower, and the upper sideband frequency, respectively.

Equations (20)—(23) establish a set of linear equations
which can be solved for the complex sideband amplitudes
V,,V,,and I, I, . Then, with standard network analysis
techniques, the sideband as well as the carrier amplitudes
can be calculated at any point of the linear network, in
particular at the load impedance. Finally, simple transfor-
mation equations equivalent to (19) yield the corre-
sponding amplitude and phase fluctuations. In this way,
the fluctuations are obtained as linear functions of the
baseband voltage V,. For the load voltage v;, e.g., the
amplitude and phase fluctuations may be expressed as

AV,

'If/j = LAV(‘*’)’Vn

A¢, = LA¢("-’)'V;1'

(24)

(25)

Now, if v,(¢) is a noise voltage, the relations for the
corresponding spectral densities Wy, W,,, and W, are

Way (@) =Ly (@)W, () (26)
Was (@) = Lsy (@)W, (). (27)

The spectral densities Wy, W,, are equal to twice the
corresponding single-sideband noise to carrier ratios, the
quantities that are most often used to characterize the noise
performance of oscillators.

Equation (24) may be used to check whether or not a
certain set of parameters meeting the conditions (12) and
(13) describes a stable mode of oscillation. If L,, is
expressed as a function of the complex frequency p instead
of jw, then for a stable oscillation all poles of the transfer
function L,,( p) must be located in the left-hand half of
the complex p-plane.

The general procedure outlined above applies to almost
every type of FET oscillator. No special assumptions have
been made regarding the topology of the coupling network
which must not even be reciprocal. Moreover, in contrast
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to the Kurokawa type of analysis [10], no Taylor ap-
proximation is needed to characterize the frequency depen-
dence of the linear network. Therefore, the validity of this
method, similar to the noise theory for negative resistance
oscillators given in [16], is not restricted to baseband or
offset frequencies w that are small compared to the 3-dB
bandwidth of the resonator. Finally, no particular FET
equivalent circuit has been used. Any circuit type model,
which includes the elements c,, g,,, and g, is suitable for
the analysis.

IV. SIMPLIFIED OSCILLATOR ANALYSIS

Although in principle closed-form solutions for the func-
tions L, and L,, can be derived from the equations given
in the preceding section, the resulting formulas will be long
and complicated. For this reason, the general analysis is
more suitable for computer simulations of FET oscillators.

In order to derive closed-form expressions for the ampli-
tude and phase fluctuations of the voltages v, and v,,
some additional assumptions are introduced now.

First, the linear network is assumed to have zero input
impedances at the baseband frequency w. Then

Vie=Va V2=0 (28)
and the baseband currents I,, I,, can be ignored.

Furthermore, the time delay 7 is neglected and the input
impedance at port 2 of the linear network is assumed to be
real at the oscillation frequency §},. As a consequence, the
carrier voltages V, and V, are exactly in antiphase, and
their phase angles are set to

(29)

It follows from (29) that both carrier voltages are even
functions of time and so are the nonlinear FET circuit
elements. Thus, all Fourier coefficients in (5) are real now.

Next, a linear capacitance with value c,,—c,, is sep-
arated from c, and from now on is treated as a part of the
linear network. This means that the coefficient c,, has to
be replaced by ¢,y —(c 0 — ¢,2) = ¢, in all equations. The
oscillation conditions (12) and (13) then take a very simple
form

0,=0, @,=m.

A
LR ANTA (30
8mo ~ 8mz + T11(840— 842) + T =0. (31)

Since w < Q, the factors £ + w in (20) may be replaced
by €,. Together with the other assumptions introduced
above, the conversion equations for the nonlinear network
now become

I _ . [—1] . [—1 —1] Vi
[Ilu]_.]gocgl 1 I/n_'_.IQOCgZ 1 1 Vlu

(32)
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| H [gmo
[Izu]_gml 1 Vn+ g2

ng] VJ
ng Vlu

8a0 8a2|| Vil
+[gd2 ng]{Vzu - (33)
Finally, it is assumed that the frequency response of the

linear network is symmetrical with respect to the oscillation
frequency, i.e.,

T*=T

prl = tpvu

(34)

With (34), the conversion equations of the linear network
are given by

il g, [1 o)
I/2u He 0 1 Vlu

Ilu
_ 1 o]\ "I [1 o] I '
’"T21u|:0 1] Vlu +TZZu 0 1 Ilu . (36)
If (32), (33) and (35), (36) are solved for VT, V,, and V¥,
V,,., the transformation to amplitude and phase fluctua-
tions according to (19) and (29) yields

p,v=1,2,

+T12u[(1) (1)”117] (35)

V1l 4 |7
AV, 2g.Ty, V, !
— =2 A 38
V2l 4 |V (38)
_ T5,(840 = 802) v Do (28 Ca | Vi
A¢1_2§20Cg2 B A Cg?. |V1|
(39)
T15,(800 — 8m2)—det(T),
A¢2=2rog2 12 (g 0 Bz) ( )
28,1 cgl) Va
I 40
( i AN
with

A= o+ 8mz2 + T11, (840 + 842) + Tor,

B=g,0— 8mt Tllu(gdo - gd2)+ T,
det(T) i TlluT22u - T12uT21u'

Corresponding equations for the amplitude and phase
fluctuations of the load voltage v, cannot be given without
special assumptions regarding the topology of the linear
network. However, if symmetry conditions like (34) also
hold for the transfer functions between v, and the voltages
vy, Uy, N0 AM to PM or PM to AM conversion takes place
[15]. Then, the amplitude fluctuations of v, are obtained as
a generally frequency dependent linear combination of (37)
and (38), and the phase fluctuations in the same way from
(39) and (40).

V. DiscussioN

The results of the preceding section enable some interest-
ing conclusions regarding the physics of the noise up-
CONVersion process.
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The first thing to note is that in (37) and (38) no Fourier
coefficients of c, appear. This means that the nonlinear
gate-source capacitance has no impact on the amplitude
noise of the oscillator. The amplitude fluctuations essen-
tially depend on the nonlinearity of the transconductance,
with g,, as the most important Fourier coefficient. It
follows from (37) and (38) that no amplitude noise would
be generated in the case of a linear transconductance, i.e.,
if 8,1 =8, =0.

A corresponding result for the phase fluctuations is
obtained if ¢, and c,, are set to zero, i.e,, if ¢, is assumed
to be linear. Then, (39) and (40) yield A¢, = A¢, = 0. Thus,
one has to conclude that the gate-source capacitance is the
nonlinear circuit element which is responsible for the con-
version of baseband noise into phase noise. The resistive
type nonlinearities alone, i.e., transconductance and drain
conductance, would cause amplitude noise, but no phase
noise.

This latter conclusion is in strict contradiction to the
results of Debney and Joshi [9], which derive a nonzero
expression for the phase noise without taking into account
any reactive nonlinear element. A possible explanation for
their result is given in the Appendix.-

As will be shown in the next section, the term 2g,, /4
usually is small compared to ¢, /c,,. Hence, if 2g,,, /4 is
neglected in (39) and (40), it becomes evident that Cq1 18
the crucial Fourier coefficient for the phase noise, just like
8,m for the amplitude noise.

Compared to the transconductance and the gate-source
capacitance, the nonlinear drain conductance is of minor
importance for the noise upconversion process.

Although the discussion in this section has been based
on the simplified oscillator analysis, it is expected that the
general theory will lead to similar results for the case of
practical FET oscillators and that the principal conclusions
given above essentially remain valid.

VI. ExAMPLE

The simplified method of analysis shall now be applied
to the oscillator equivalent circuit in Fig. 2. The FET is
represented by its-nonlinear circuit elements and the low-
frequency noise source. Any parasitic elements have been
omitted. The transformer with turns ratio 7, provides for a
broad-band positive feedback of the FET. The turns ratio
n, of the second transformer determines the coupling fac-
tor of the stabilizing resonator which is modeled as a shunt
LCG combination. The load conductance G, may be
thought of being composed of a 50-Q resistor and an
impedance transformer.

According to the assumptions described in Section IV, a
linear portion c,q — ¢,, of ¢, is, after proper transforma-
tion, included in C.

For the linear network in Fig. 2, the elements of the
reversed voltage—current transmission matrix are easily
found to be

(41)
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Fig. 2. FET oscillator example.

T,,=0 (42)

T, - _nf[GL+n3(G+jszc+miL)] (43)

T, =—1/n;. (44)
Then, the first oscillation condition (30) yields
14
n, = —. 45
ol (45)

From the imaginary part of the second condition (31), it
follows that the oscillation frequency is equal to the reso-
nant frequency of the resonator

1

Q, = .
0 JVIC

The real part of (31), in conjunction with (41) and (43)
yields

(46)

8mo ™ 8m2 "f(gdo ~ 8 tG+ ”EG) =0. (47)

With @ =Q, + « and w < Q,, (43) may be rewritten as

G+2jﬂi0‘/§)]. (48)

Hence, all matrix elements meet the symmetry condition
(34).

Inserting the equations for the matrix elements into
(37)—(40), and incorporating the oscillation conditions (45)
and (47) leads to the following expressions for the ampli-
tude and phase fluctuations:

T21=_nf[GL+n3

_Aﬁ _ % _AV, 8ml V
AT ”g . e L fC N
a2y = 8m2 jQOnfnr L
(49)

Qqe AV, ¢4 V.
Ap) = A¢p, = Ap, = — e (_L £ n)-

w5, [C A\ Wi
Ta, "V T
0

(50)
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The RF power delivered to the load is given by

1
P, = EGL|V2|2

(51)

whereas the power

Pr=2n2GIV;? (52)
is dissipated in the resonator. The sum of P, and Py is the
available power of the FET for this particular mode of
oscillation

1
5 (53)
The relation between P; and P,, may also be expressed by
the loaded and unloaded quality factors Q,,(Q, of the
resonator

P, =P, +Py==(G, +n2G)|V,%.

fenfi-%) o
0
with
Q.C
Qo= (55)
and
__ 8C
QL_'G-+GL/n$' (56)

Using (45), (46), (53), and (56), equations (49) and (50) for
the amplitude and phase fluctuations can be transformed
into a more convenient form

AVL — 8ml Vn (57)
IVLl g @ _ g + ] [ Pav IVll
Ay o 00/20, IV
. Qch2|I/1|2/P:«1v AVL cgl I/n

2,/20,

In (57) and (58), all parameters except Q; can be obtained
from a large-signal simulation of the FET if a fixed value
of the device load resistance R =1/(G; + n’G) is assumed.
The amplitude fluctuations follow a low-pass character-
istic. Since Q,/Q, is the 3-dB bandwidth of the loaded
resonator, @, /2Q; would be the expected cutoff frequency.
The actual cutoff frequency, however, is £,/2Q,; multi-
plied by a factor f,,, which may be viewed as a normalized
cutoff frequency
V2l
cn (gd2|V1| g (59)

The quantity f,, has another important meaning. If a
stability analysis is performed as described in Section III,
the resulting condition for a stable mode of oscillation is

14 (60)

g — > 0.

d2 |V1| Em2

Thus, if f,, is evaluated for a certain set of parameters, the
sign of f,, is a stability indicator.

P

av

) Vil V5l
m2 .
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For offset frequencies w that are small compared to

fnf20/20,, (57) and (58) reduce to

AV, V.
L __ : 8m1 n (61)
[N
d2|V1| m2
AT cal ¥
A¢L=] 082‘; gml +i1 n'
o Vol o | Wil
QO/2QL gd2|V1| &m2
(62)

If (62) is transformed to spectral densities and if the
baseband spectrum W, (w) follows a 1/f characteristic, the
experimentally observed 30-dB/decade slope is obtained
for Wy, ().

For fixed FET operating conditions, i.e., if V;, V,, and
R are constant, the only way to minimize the phase noise is
to make Q; as high as possible. Theoretically, the optimum
phase noise value is obtained if Q; approaches Q, due to
very loose resonator coupling. This value, however, is a
hypothetical limit, since in order to keep R constant, G,
must be reduced in such a way that, according to (54), the
output power P; approaches zero. Nevertheless, there is a
tradeoff between output power and phase noise. Equations
(54) and (62) show that maximum output power can be
achieved only at the expense of poor noise performance. A
good compromise is to choose Q; = Q, /2. Then, the out-
put power is 3 dB below the maximum, and the phase
noise spectral density is only 6 dB higher than the theoreti-
cal limit. '

The condition Q; = Q,/2, which is equivalent to mak-
ing the external Q equal to the unloaded Q of the reso-
nator, might be a useful general design rule for oscillators,
provided that the phase noise is of any importance for the
intended application.

Now the various parameters in the expressions given
above shall be evaluated for a simple analytical description
of the device nonlinearities. Closed-form expressions based
on Shockley’s FET theory and a phenomenological consid-
eration of the drain conductance in the saturated region
have been used to model the i, (v, v,) characteristics
shown in Fig. 3 and the corresponding functions g, (v,, v5)
and g,(v,, v,). The gate-source capacitance is described by
the conventional abrupt junction expression

. \~1/2
cg(vl,v2)=C0(1—-V—;) .

The values of the zero-voltage capacitance and the built-in
barrier potential have been chosen as C;=0.5 pF and
Vy =1V, respectively.

Fixed bias conditions of Vo= —1V and V,; =4V have
been assumed for all computations. Then, all parameters
could be evaluated as functions of a single variable, namely,
the voltage amplitude |V;|. For each value of |V;|, the FET
load resistance R has been set to the value which maxi-
mizes the available power P,,. This optimum resistance

(63)



240
100
vi=
ov
g
E
$ 025V
.
z
w
g
3 -05v
ut
£
5 -075v
g
Z
3 ~10V
&
1,25V
15V
0 . L
0 1 2 3 4 5 6
DRAIN-SOURCE VOLTAGE v, (Voits)
Fig. 3. Drain-source current characteristic used in the FET oscillator
example.
1000) Vio=-1V 0
“ Vyo= 4V
£
£
=)
o5 800F . . 0z
w opt av =
Q a®
< o
b so0; 0 £
w 4
& Loof »S
— g
& 4
3
3 200 {0
z
o
o
% 02 04 06 08 w0 °

DRIVE VOLTAGE AMPLITUDE vl (Volts)

Fig. 4. Optimum FET load resistance and associated available power as
a function of FET drive level.

R, and the associated power P,, are shown in Fig. 4. Up
to a drive level of |V;|=0.15V, the FET operates under
quasi-linear conditions, as indicated by the constant value
of R, For higher drive levels, amplitude clipping of v,
occurs and R, rapidly drops to smaller values. The
available power P,, continuously increases up to about 50
mW for |V;|=1 V. For voltage amplitudes |V{|>1 V,
forward conduction of the gate junction would occur for
part of a period.

The efficiency n=P,, /(V,31,,), which is not shown
here, follows a similar but not identical characteristic as P,,
with a value of about 47 percent at |V;|=1V.

The normalized cutoff frequency f,, is depicted in Fig.
5. For all drive levels corresponding to useful values of P,,,
f., is close to unity. If |V|is lowered and approaches the
critical value |V}[ =0.15 V, f,, decreases and finally drops
to zero, thus marking the stability boundary. For smaller
drive levels, f., takes small negative values (not included
in Fig. 5) indicating that a stable oscillation is not possible.

Fig. 6 shows the two terms g,., /(g,,V31/|V1]— 8,.2) and
€41/ €42, Which are part of (61) and (62) for the amplitude
and phase fluctuations. Typically, the latter expression is
much larger than the former one, except for drive levels
close to the stability boundary. Hence, with (62), the phase
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fluctuations are approximately given by

A - ,QOCg1|V1|2/Pav V;,
¢L_ J w lVli .

/20,

It is evident from (61) and (64) that g, and ¢, are the
crucial Fourier coefficients for the amplitude and phase
noise, respectively.

Finally, Fig. 7 shows the resulting amplitude and phase
noise characteristics in terms of single-sideband noise to
carrier ratios in a 1-Hz bandwidth. The curves have been
computed for a carrier frequency of 10 GHz and an offset
frequency of 10 kHz. The loaded Q of the resonator was
set to 50, and for the spectral density of the baseband noise
source a value of 10~ V2 /Hz was used.

There is a rapid increase of both amplitude and phase
noise close to the stability boundary, a property which is
common to all oscillators. Over most of the drive level
range, however, the curves exhibit contrary slopes. For
increasing |V;], the amplitude noise decreases towards a
steady-state value, whereas the phase noise continually
increases at an almost constant rate. As for most oscilla-
tors, the phase noise typically is several orders of magni-
tude higher than the amplitude noise.

(64)
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Since the FET has been modeled in a very simple
manner, neglecting all parasitic elements, the numerical
results given above are not regarded as exact performance
predictions for a practical microwave oscillator. The main
purpose of this example was to demonstrate the capabili-
ties of the analysis technique and to illustrate some funda-
mental relationships. The application of the theory to
practical FET oscillators will be the subject of a supple-
mentary paper.

VIIL

The upconversion of low-frequency noise in microwave
FET oscillators has been analyzed. In its general form, the
described method can be applied to virtually all kinds of
FET oscillators. From a simplified version, closed-form
expressions for amplitude and phase noise have been de-
rived, which provide for a better understanding of the
physics of the upconversion process.

As a result of the analysis, the gate-source capacitance of
the FET has been identified as the nonlinear element which
is responsible for the conversion of low-frequency noise
into phase noise, whereas the amplitude noise is primarily
determined by the nonlinear transconductance.

On the basis of the theory presented in this paper, the
noise performance of practical FET oscillators can be
calculated and optimized with respect to device selection,
bias conditions, and circuit topology and element values.

It may prove to be particularly useful to investigate the
influence of the low-frequency circuitry on the oscillator
noise. An efficient technique to improve the noise perfor-
mance by means of a suitable low-frequency circuit ap-
pears to be very desirable, since the additional costs are
negligible and the technique could be applied to fixed
tuned as well as to variable frequency FET oscillators.
First experimental results on the effects of the gate circuit
low-frequency resistance on the phase noise have been
published in [17].

CONCLUSION

APPENDIX

In contrast to the theory presented in this paper, the
analysis of Debney and Joshi [9] yields a nonzero expres-
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sion for the oscillator phase noise, although only resistive-
type nonlinearities are taken into account. On checking
their paper, it was found that an improper application of
Kurokawa’s theory is the most likely reason for this result.

In the Kurokawa analysis, an RF noise source is as-
sumed with totally independent upper and lower side-
bands. Consequently, the spectral densities of the ampli-
tude and phase fluctuations may be computed separately
for each sideband of the noise source, and the final result is
obtained by simply adding the corresponding spectral den-
sities. This procedure is not allowed, however, if the RF
noise is generated by mixing a baseband noise signal with
the RF carrier. In this case, the two noise sidebands are
correlated and their contributions must be combined be-
fore the spectral densities are calculated. Otherwise, the
correlation would be ignored, which may lead to totally
erroneous results.

It seems that this point has not been considered by
Debney and Joshi, as is indicated, in particular, by (2), (3),
and (8) in their paper.
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Design Consideration for
Frequency-Stabilized MIC IMPATT
Oscillators in the 26-GHz Band

NOBUAKI IMAI aAND KAZUYUKI YAMAMOTO, MEMBER, IEEE

Abstract —A 26-GHz frequency-stabilized MIC IMPATT oscillator
using a dielectric resonator has been developed. In designing such an
oscillator in the high-frequency range, many parameters affecting frequency
stability should be considered. This paper discusses oscillation frequency
variations caused by deviations in the resonant frequency of dielectric
resonators, in diode reactance, and in the electrical length between the
diode and resonator, all of which are due to temperature variation. Design
criteria for a highly frequency-stabilized oscillator are also presented. With
these techniques, we have obtained an MIC IMPATT oscillator with
frequency stability of less than +5.0x 103, output power deviation of
less than +2.0 dB, and output power of more than 23 dBm over the
temperature range of 0°C to 50°C.

I. INTRODUCTION
ECENTLY, much attention has been focused on

microwave integrated circuits (MIC’s) for their com- .
pactness and low cost. There have been many papers -

concerning MIC mixers [1], amplifiers [2], oscillators [3]-[5],
and transmitter /receiver modules [6].
Frequency-stabilized oscillators are important compo-
nents for the practical application of MIC’s, and many
MIC oscillators using dielectric resonators have been devel-

Manuscript received June 7, 1984; revised October 30, 1984.

The authors are with the Radio Transmission Section, Yokosuka Elec-
trical Communication Laboratory, Nippon Telegraph and Telephone
Public Corporation, 1-2356 Take, Yokosuka-shi, 238-03 Japan

oped in both the microwave frequency range [7]-{11] and
higher frequency bands [6], [12].

However, to design frequency-stabilized MIC oscillators
in the high-frequency range, more detailed theoretical and
experimental investigations are necessary in order to over-
come the following problems.

(1) In higher frequency bands, the unloaded Q factor
(Q,) of dielectric resonators decreases, and frequency sta-
bilization becomes difficult.

(2) The resonant frequency of the resonator depends not
only on high dielectric constant material, but also on
substrate and surrounding materials, especially at high
frequencies.

(3) As the oscillation frequency increases, frequency
deviation becomes more dependent on variations in the
electrical length between the diode and resonator.

(4) To obtain a high-power, highly frequency-stabilized
MIC oscillator, circuit parameters (Q, and VSWR) need to
be optimized.

This paper presents a method to overcome these prob-
lems, which facilitates the development of a highly
frequency-stabilized MIC oscillator. The first part includes
a discussion of resonant frequency deviations in the dielec-
tric resonator due to ambient temperature change, and
oscillation frequency variations due to changes in both the
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