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Analysis of Noise Upconversion in
Microwave FET Oscillators

HEINZ J. SIWERIS AND BURKHARD SCHIEK

,4fmtruiX -The upeonversion of Iow-freqnency noise in microwave FET

oscillators is investigated. The theoretical anafysis is presented in two

forms, a generaf and a simpfffied one. The latter version yields closed-form

expressions for amplitude and phase noise, which are discussed wfth regard

to the physics of the upeonversion process. Application of the method is

demonstrated with an example.

I. INTRODUCTION

A FTER BEING ALREADY established as an im-

portant device for microwave amplifiers, both for

low-noise and power applications, the gallium arsenide

field-effect transistor (GaAs FET) has also been used in

oscillators to a steadily increasing extent during the last

Manuscript received June 15, 1984; revised October 30, 1984. This
work was supported in part by the Deutsche Forschungsgemeinschaft
(DFG).

The authors are with the Institut Fur Hoch- und Hochstfrequenztech-
nik, Rnhr-Universitat Bochurn, 4630 Bochum 1, West Germany.

few years. When compared to other solid-state devices

suitable for microwave sources, the FET offers the

advantages of high efficiency and convenient biasing re-

quirements. However, considering the excellent noise per-

formance of FET amplifiers, the noise properties of FET

oscillators are only moderate. Therefore, transferred-elec-

tron oscillators are still preferred for applications where

noise performance is critical.

The reason for the different noise performance of FET’s

in amplifiers on the one side and in oscillators on the other

side has beerl identified to be the strong low-frequency (or

l/f) noise of the device. This kind of noise is insignificant

in all linear RF applications like small-signal amplifiers. In
oscillators, however, since the FET is operated under

large-signal conditions, the low-frequency noise is uncon-

verted due to the device nonlinearities and gives rise to

noise sidebands around the RF carrier signal in the output

0018-9480/85 /0300-0233$01 .00 @1985 IEEE
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spectrum. This mixing process is the dominant noise gener-

ation mechanism in FET oscillators for offset frequencies

up to at least 1 MHz. Therefore, RF noise sources do not

contribute significantly to the close-to-carrier noise.

These results have been concluded from the frequency

dependence of measured phase noise spectra, which de-

crease by about 30 dB/decade within the resonator band-

width [1]–[3], as well as from direct comparisons between

low-frequency noise and phase noise measurements per-

formed on a number of different FET’s and the corre-

sponding oscillators [3]–[8].

The development of specific noise reduction techniques

for microwave FET oscillators requires a thorough under-

standing of the noise upconversion process. Up to now, the

only detailed theoretical analysis on this subject has been

given by Debney and Joshi [9]. In their paper, a combina-

tion of the FET and some feedback elements is treated as

an active one-port network. The l/f noise, initially de-

scribed by a low-frequency voltage source in the gate

circuit, is converted to an equivalent RF noise voltage

source connected in series to the one-port network. The

relation between the two noise sources is determined by

means of a large-signal model for the FET. The resulting

network represents a negative resistance oscillator and is

analyzed using an extended version of Kurokawa’s theory

[10].

The large-signal model employed by Debney and Joshi

in their analysis is based upon the assumption that the

transconductance and the drain conductance are the domi-

nant nonlinear elements of the FET. This assumption

refers to the results of Rauscher and Willing regarding the

simulation of nonlinear FET performance [11], [12]. On the

other hand, Pucel and Curtis [3] as well as Camiade et al.
[7] consider the transconductance and the gate-source

capacitance responsible for the noise upconversion, with

the latter element being the most important one.

To answer this controversial question, it is necessary to

include all nonlinear elements mentioned above in an

analysis of the noise upconversion process. Such a theory is

described in this paper. It is, moreover, in several respects

more general than the approach of Debney and Joshi.

After a short description of the basic oscillator model, a

general analysis of the oscillation conditions and the noise

upconversion process will be given. The results are re-

garded as a basis for computer simulation of arbitrary FET

oscillators. By introducing some simplifying assumptions,

closed-form expressions for amplitude and phase noise will

be derived, followed by a discussion of the main conse-

quences concerning the upconversion process. Finally, the

capabilities of the method will be demonstrated with an

example.

II. THE FET OSCILLATOR MODEL

The analysis described in the following sections is based

on the FET oscillator model shown in Fig. 1. The oscillator

is divided into a linear and a nonlinear two-port network.

The latter one contains the dominant nonlinear elements of

the FET equivalent circuit, namely, the gate-source capaci-

NONLINEAR NETWORK
~———.——————— ~
i 1! I* I

NOISE

w,

:Mg+”ll “’+”~~

L—– —–_ —_–d
~– .––––– ––

–1

LINEAR FET CIRCUIT ELEMENTS

II COUPLING NErwORK ,j

I LOAD
L––_–––––––––––––––;

LINEAR NETWORK

Fig. 1, FET oscillator model.

tance Cg, the transconductance g~, and the drain conduc-

tance gd. The linear FET elements are combined with the

remaining oscillator circuitry and the load to form the

linear two-port network.

The nonlinear FET elements will be characterized by

expressing their instantaneous values as time-invariant

functions of the voltages UI and V2. This quasi-static

approach has been successfully used by Rauscher and

Willing to simulate the nonlinear performance of micro-

wave FET’s [11], [12]. If, from a quasi-static FET model,

time-invariant functions Cg(Ul, Uz) for the gate-source

capacitance and i~,( VI, V2) for the drain-source current

have been derived, the currents il and i2 are given by

dul(t)
il(t)=cg [u1(t)ju2(i)l~

iz(t)=– i~, [ul(t–7), u2(t)]

where T accounts for the channel transit time

(1)

(2)

delay.
The transconductance and the drain conductance are

obtained as partial derivatives of the function id, ( Ul, U2)

~d(t)= did. [u,(t– T), u2(t)]

L?U2 “

(3)

(4)

The low-frequency noise of the FET is modeled as a

voltage source u. in the gate circuit. For a highly accurate

model, it might be necessary to introduce an additional

noise source, as indicated by recent experimental results

[8].

III. GENERAL OSCILLATOR ANALYSIS

A. The Oscillation Conditions

To obtain the general oscillation conditions, u. is set to

zero. Then, for a stationary oscillation with frequency S?o,
the voltages Ul, U2 and currents il, i2 are strictly periodic

functions of time. According to the quasi-static FET model,

the same holds for Cg, g~, and gd, which hence can be
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expanded into Fourier series

+W

cg(t) = ~ ‘ cg,eJk~Ot
k=–m

+CcI

gin(t) = x gmkeJkQOt, gal(t) = ‘~m gdkeJk%f

k=–ca k=–m 1

(5)

The voltages and currents may be decomposed into static

and time-dependent dynamic components

Uu(t)=vuo+fiu(t), i,(t)=~vo+iv(~), v=1,2. (6)

In general, both the voltages tip and the currents ~Vconsist

of a fundamental component at fl o, and an infinite number

of harmonics. To simplify the analysis, it is assumed that

due to a properly coupled resonator the input impedances

of the linear network are low at all harmonic frequencies.

The harmonic components in ;I and ;Z will therefore

generate no corresponding voltages and fil and fiz are

reduced to the sinusoidal fundamental. As a further conse-

quence, the current harmonics have no impact on the

amplitudes at the fundamental frequency and can be ne-

glected in the analysis.

If the voltages tiV and currents ;V are now expressed as

tiV(t) = Re { VYe~aOr} (7)

;V( t)= Re { IveJQOt} + (harmonic components),

v=1,2 (8)

then (l)–(8) yield

*)11= jflo ( Cgovl – cg2J”l (9)

– 12 = gmoe‘J~oTV1 — gm2e jQO’vl* + gdov2 – gd2v2*

(lo)

where the asterisk denotes the complex conjugate.

A second pair of equations relating the complex ampli-

tudes 11,12 and Vl, V2 is obtained from a matrix descrip-

tion of the linear network. For reasons of convenience

regarding the form of later results, the reversed form of the

voltage–current transmission matrix is used here

[:1=[221[:1(11)

In general, the matrix elements are functions of frequency:

TPV= TPV(~), ~, V =1,2.
In (9)–(11), the currents 11,12 can be eliminated, and

after some rearrangements the following general oscillation

conditions are obtained:

(TI1 + ~&c,c)T12)V1- &c,zT#r - VZ = O (12)

[ T21+ gmoe ‘~~07 + g~oTll

1+~~oCgo ( gdoT12 + T22 ) – ~~oc$z&i2Tl; VI

[– gm2e
jS20.r +

gd2Tl?

+ ~~oc82 ( g~oT12 + T22 1)– @ocgoiLi#fi v~ = 0. (13)

For a given oscillator circuit, the functions ~.(~) are

fixed, and (12) and (13) can be used to determine the

frequency !20 and the voltages Vl, V2 for all possible modes

of oscillation. If VI and V2 are written as

VI = lVlleJP’, V2= lV21eJg2 (14)

then one of the two phase angles cpl, cp2 can be set to an

arbitrary value without loss of generality. Hence, the four

real quantities IVII, IV21, 92 – rpl, and !JO remain to be

determined from the two complex equations (12) and (13).

It should be noted that all Fourier coefficients are func-

tions of VI and V2.
Conversely, if for a certain desired oscillation frequency

flo the complex voltages Vl, V2 have been fixed, e.g., as a

result of an optimization of the efficiency by means of a

large-signal simulation of the FET, the Fourier coefficients

are known, too. Then, (12) and (13) may be viewed as

conditions for the matrix elements TPV,which can be used

to synthesize a proper coupling network similar to the

procedures described in [13] and [14].

Equations (12) and (13) are necessary but not sufficient

for a stable oscillation. To ensure stability, one has to

check that any amplitude changes caused by disturbances

are limited. This test can be performed using the results of

the following noise analysis.

B. Noise Upconversion

Provided that a stable oscillation with frequency L?. and

complex amplitudes Vl, V2 and 11, 12 exists, the low-

frequency voltage v. in Fig. 1 will cause low-frequency

amplitude and phase fluctuations of the RF voltages and

currents.

The objective of the following analysis is to pr@ide a

general method to establish the relation between the spec-

tral density of the noise source and the spectral densities of

the amplitude and phase fluctuations.

Since the noise voltage v. is small compared to the RF

voltage amplitudes, the relation between v. and the re-

sulting amplitude and phase fluctuations is quasi-linear.

For this reason, the entire analysis can be performed using

an equivalent sinusoidal voltage source at a baseband

frequency u

v.(t) =Re{V.eJ’’(}. (15)

In the final step of the analysis, the results will be trans-

formed to spectral densities.

The dynamic voltages and currents may now be de-

scribed as the sum of a small baseband signal and a large

RF signal with simultaneous amplitude and phase mod-

ulation. Thus, the voltages fil, tiz are given by

{v‘141+w)e’[QO’tiv(t)=Re Vbejot

(16)

and

AuY(t) = Re { AVVeJu’ }, AcpU(t)=Re{A$VeJ@’},

V=1,2. (17)
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The peak deviations of both amplitude and phase are

small, so the modulation results in a single pair of side-

bands at frequencies 00 ~ u with complex amplitudes VP~

and V,U

OV(t)=Re{VV~eJ ‘t+ lJ7vleJ(Q0t+Q’v) + vv{fJ(QO–~)f

+ vvueJ@o+u)~
},

V=1,2. (18)

These two representations of the voltages are related by the

following matrix equation [15]:

e–JWu

1[1vu~
–m” v-je ,U ‘

Neglecting the harmonic components, a set

V=1,2.

(19)

of equations

analogous to (16)–(19) holds for the currents ;I, ;Z with

V,, Vul, VVU,VU6,etc., replaced by IV, IV[, I,U, IVb, etc., respec-

tively.

In (18), the baseband and sideband components are

small compared to the carrier amplitudes Vl, V2. Therefore,

the time dependence of the nonlinear FET circuit elements

may be assumed to be entirely determined by VI and V2
(and the static components). Hence, the Fourier expan-

sions (5) can be used without change. With this parametric

approach, (l)–(5) in conjunction with (18) and its current

counterpart lead to the following conversion equations for

the nonlinear network:

[1
I lb

1;

I lU

I

u Cgo 6J Cgl u C;l

=j –(QO– Q))C:l -( flo-td)cg, -(12, -U)C;,

(Qo+@)cgl (fJo+@)cg2 (Qo + Q)cgo 1

[1

Vlb

. VJ (20)

v lU

‘[: iik!l’21)
The matrices in (20) and (21) are well known from the

parametric theory of nonlinear systems.

The conversion equations for the linear network in terms

of the elements of the reversed voltage–current transmis-

sion matrix are

‘Eb~[‘!21
[l=[’!+[‘!lIIVEKI

‘Eb+7!2!E’23)
where TPV~= TWV(CJ),TPV1= TPV(~o– u), and TWVU= TYV(L?O
+ u) denote the matrix elements at the baseband, the

lower, and the upper sideband frequency, respectively.

Equations (20)–(23) establish a set of linear equations

which can be solved for the complex sideband amplitudes

VVI,V.U and Iv,, I.U. Then, with standard network analysis

techniques, the sideband as well as the carrier amplitudes

can be calculated at any point of the linear network, in

particular at the load impedance. Finally, simple transfor-

mation equations equivalent to (19) yield the corre-

sponding amplitude and phase fluctuations. In this way,

the fluctuations are obtained as linear functions of the
baseband voltage V.. For the load voltage u~, e.g., the

amplitude and phase fluctuations may be expressed as

AVL
—= LAv(u).~
IVLI

(24)

A@L=LA+(LI).Vn. (25)

Now, if u.(t) is a noise voltage, the relations for the
corresponding spectral densities WA~, W~~, and Wn are

wAv(ti) =lLAv(CJ)l’wn(@) (26)

WA@(@) =l~A@(@)12W. (@). (27)

The spectral densities WAV,WA+ are equal to twice the

corresponding single-sideband noise to carrier ratios, the

quantities that are most often used to characterize the noise

performance of oscillators.

Equation (24) may be used to check whether or not a

certain set of parameters meeting the conditions (12) and

(13) describes a stable mode of oscillation. If LAV is
expressed as a function of the complex frequency p instead

of ju, then for a stable oscillation all poles of the transfer

function LA~( p) must be located in the left-hand half of

the complex p-plane.

The general procedure outlined above applies to almost

every type of FET oscillator. No special assumptions have

been made regarding the topology of the coupling network

which must not even be reciprocal. Moreover, in contrast
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to the Kurokawa type of analysis [10], no Taylor ap-

proximation is needed to characterize the frequency depen-

dence of the linear network. Therefore, the validity of this

method, similar to the noise theory for negative resistance

oscillators given in [16], is not restricted to baseband or

offset frequencies o that are small compared to the 3-dB

bandwidth of the resonator. Finally, no particular FET

equivalent circuit has been used. Any circuit type model,

which includes the elements Cg, g~, and gd is suitable for

the analysis.

IV. SIMPLIFIED OSCILLATOR ANALYSIS

Although in principle closed-form solutions for the func-

tions LAY and LA+ can be derived from the equations given
in the preceding se&ion, the resulting formulas will be long

and complicated. For this reason, the general an~ysis is

more suitable for computer simulations of FET oscillators.

In order to derive closed-form expressions for the ampli-

tude and phase fluctuations of the voltages Ul and U2,

some additional assumptions are introduced now.

First, the linear network is assumed to have zero input

impedances at the baseband frequency u. Then

Vlb=vn, v2b=o (28)

and the baseband currents 11~,12b can be ignored.

Furthermore, the time delay ~ is neglected and the input

impedance at port 2 of the linear network is assumed to be

real at the oscillation frequency flO. As a consequence, the

carrier voltages VI and V2 are exactly in antiphase, and

their phase angles are set to

fpl=o, ~2=7. (29)

It follows from (29) that both carrier voltages are even

functions of time and so are the nonlinear FET circuit

elements. Thus, all Fourier coefficients in (5) are real now.

Next, a linear capacitance with value Cgo– cg2 is sep-

arated from Cg and from now on is treated as a part of the

linear network. This means that the coefficient cgO has to

be replaced by cgO– (cgO – cg2) = cg2 in all equations. The

oscillation conditions (12) and (13) then take a very simple

form

(30)

gmO– gm2 + ~ll(gdO– &i2)+~21=0-
(31)

Since ti << file, the factors flo +- o in (20) may be replaced

by flo. Together with the other assumptions introduced

above, the conversion equations for the nonlinear network

now become

(32)

Finally, it is assumed that the frequency response of the

linear network is symmetrical with respect to the oscillation

frequency, i.e.,

TP~l=TPVU ~, V=l,2. (34)

With (34), the conversion equations of the linear network

are given by

If (32), (33) and (35), (36) are solved for V17, Vlu and J&,

V,U, the transformation to amplitude and phase fluctua-

tions according to (19) and (29) yields

AVI Zg.1 ~—= ——

IJ”lI A IVII
(37)

(38)
AV2 2&?llTllu J v /

IV21= A IV21

A~l = 2Qocg2
B (?-a%

Tnu(tzio – gd2)+ T2224 Z%l

\

(39)

“(*-%)*’40)
with

(A = g~o + g~z + T1lU gdO + gd2)+ ’21.

(B = gmo – gm2 + TH. gdO – gd2 ) + ’21.

det(T) ~ = TllUT22U – T12UTZ1U.

Corresponding equations for the amplitude and phase

fluctuations of the load voltage u~ cannot be given without

special assumptions regarding the topology of the linear

network. However, if symmetry conditions like (34) also

hold for the transfer functions between u~ and the voltages

u~, V2, no AM to PM or PM to AM conversion takes place

[15]. Then, the amplitude fluctuations of u~ are obtained as

a generally frequency dependent linear combination of (37)

and (38), and the phase fluctuations in the same way from

(39) and (40).

V. DISCUSSION

The results of the preceding section enable some interest-

ing conclusions regarding the physics of the noise up-

conversion process.
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The first thing to note is that in (37) and (38) no Fourier

coefficients of Cg appear. This means that the nonlinear

gate-source capacitance has no impact on the amplitude

noise of the oscillator. The amplitude fluctuations essen-

tially depend on the nonlinearity of the transconductance,

with g~l as the most important Fourier coefficient. It

follows from (37) and (38) that no amplitude noise would

be generated in the case of a linear transconductance, i.e.,

if g~l = g~z = O.

A corresponding result for the phase fluctuations is

obtained if Cgl and Cgz are set to zero, i.e., if Cg is assumed

to be linear. Then, (39) and (40) yield A+l = A@z= O. Thus,

one has to conclude that the gate-source capacitance is the

nonlinear circuit element which is responsible for the con-

version of baseband noise into phase noise. The resistive

type nonlinearities alone, i.e., transconductance and drain

conductance, would cause amplitude noise, but no phase

noise.

This latter conclusion is in strict contradiction to the

results of Debney and Joshi [9], which derive a nonzero

expression for the phase noise without taking into account

any reactive nonlinear element. A possible explanation for

their result is given in the Appendix. -

As will be shown in the next section, the term 2g~l/A

usually is small compared to cgl/cg2. Hence, if 2g~l/zl is

neglected in (39) and (40), it becomes evident that Cgl is

the crucial Fourier coefficient for the phase noise, just like

g~l for the amplitude noise.

Compared to the transconductance and the gate-source

capacitance, the nonlinear drain conductance is of minor

importance for the noise upconversion process.

Although the discussion in this section has been based

on the simplified oscillator analysis, it is expected that the

general theory will lead to similar results for the case of

practical FET oscillators and that the principal conclusions

given above essentially remain valid.

,VI. EXAMPLE

The simplified method of analysis shall now be applied

to the oscillator equivalent circuit in Fig. 2. The FET is

represented by its. nonlinepr circuit elements and the low-

frequency noise source. Any parasitic elements have been

omitted. The transformer with turns ratio nf provides for a

broad-band positive feedback of the FET. The turns ratio

n, of the second transformer determines the coupling fac-

tor of the stabilizing resonator which is modeled as a shunt

LCG combination. The load conductance G~ may be

thought of being composed of a 50-L? resistor and an

impedance transformer.

According to the assumptions described in Section IV, a

linear portion cgO– Cgz of Cg is, after proper transforma-

tion, included in C.
For the linear network in Fig. 2, the elements of the

reversed voltage–current transmission matrix are easily

found to be

Tll = – nf (41)

FET RESONATOR
r- .-1

———————_
1

1 1

~_____ ––––7

1 DRAIN ,

I

WWJADSANO f
FEEOSACK I
METWORK I

I

I*

!“,1 ,
L___>

SOiIRCE
L—__________,

Fig. 2. FET oscillator example.

Tlz = O (42)

[( 1
T21=–n~ G~+n~ G+ji2C+— )1 (43)

j!ilL

Tzz= – I/nf. (44)

Then, the first oscillation condition (30) yields

IV21

“f=~”
(45)

From the imaginary part of the second condition (31), it

follows that the oscillation frequency is equal to the reso-

nant frequency of the resonator

(46)

The real part of (31), in conjunction with (41) and (43)

yields

gmo–gm2– n~(gdo– gd2+G~+n:G)=o. (47)

With $11= SIO+ u and u<< flo, (43) may be rewritten as

T21=-n,[G.+n~(G+2j&~)]. (48)

Hence, all matrix elements meet the symmetry condition

(34).

Inserting the equations for the matrix elements into

(37)-(40), and incorporating the oscillation conditions (45)

and (47) leads to the following expressions for the ampli-

tude and phase fluctuations:

AV1 Av2=~= gml VH

Ivll = IV21 IVLI

r

cm

gd2nf – %2 + j~nfn; ~

(49)

(50)
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The RF power delivered to the load is given by

1

‘~=7GJv2’2 (51)

whereas the power

P~ = ~n:GlV212 (52)

is dissipated in the resonator. The sum of PL and P~ is the

available power of the FET for this particular mode of

oscillation

Pav=PL+ P,=; (GL+n:G)lV212. (53)

The relation between PL and P,v may also be expressed by

the loaded and unloaded quality factors QL, QO of the

resonator

with

and

(54)

(55)

(56)

Using (45), (46), (53), and (56), equations (49) and (50) for

the amplitude and phase fluctuations can be transformed

into a more convenient form

AVL gml
—.

IVL] IV21 P
& (57)

g~z~ – gmz + ~fjo~2QL IV117V21

$JoCg21v112/paV AVL ~ CgI Vn
A@L = j u

( lVL1 )

(58)
cg2 Ivll -

S20/2QL

In (57) and (58), all parameters except QL can be obtained

from a large-signal simulation of the FET if a fixed value

of the device load resistance R = l/(GL + n ~G) is assumed.

The amplitude fluctuations follow a low-pass character-

istic. Since $20/QL is the 3-dB bandwidth of the loaded

resonator, !Jo/2QL would be the expected cutoff frequency.

The actual cutoff frequency, however, is !Jo/2QL multi-

plied by a factor ~cm,which maybe viewed as a normalized

cutoff frequency

( IV21

)

IV111V21

f.. = G2E - gm2 pa” “ (59)

The quantity fcn has another important meaning. If a

stability analysis is performed as described in Section III,

the resulting condition for a stable mode of oscillation is

IJ’-2I

gd2~ – gm2 >0. (60)

Thus, if f=. is evaluated for a certain set of parameters, the

sign of ~.. is a stability indicator.

For offset frequencies o that are small compared to

f..%/2QL, (57) and (58) reduce to

AVL g.1 ~

IVLI = IV21 IJ’11

a2~ – gm2

(61)

(62)

If (62) is transformed to spectral densities and if the

baseband spectrum W.(o) follows a l/f characteristic, the

experimentally observed 30-dB/decade slope is obtained

for W~@(6J).

For fixed FET operating conditions, i.e., if VI, V2, and

R are constant, the only way to minimize the phase noise is

to make QL as high as possible. Theoretically, the optimum

phase noise value is obtained if QL approaches Q. due to

very loose resonator coupling. This value, however, is a

hypothetical limit, since in order to keep R constant, GL

must be reduced in such a way that, according to (54), the

output power PL approaches zero. Nevertheless, there is a

tradeoff between output power and phase noise. Equations

(54) and (62) show that maximum output power can be

achieved only at the expense of poor noise performance. A

good compromise is to choose QL = Qo/2. Then, the out-

put power is 3 dB below the maximum, and the phase

noise spectral density is only 6 dB higher than the theoreti-

cal limit.

The condition QL = Qo/2, which is equivalent to mak-

ing the external Q equal to the unloaded Q of the reso-

nator, might be a useful general design rule for oscillators,

provided that the phase noise is of any importance for the

intended application.

Now the various parameters in the expressions given

above shall be evaluated for a simple analytical description

of the device nonlinearities. Closed-form expressions based

on Shockley’s FET theory and a phenomenological consid-

eration of the drain conductance in the saturated region

have been used to model the id,( Ul, U2) characteristics

shown in Fig. 3 and the corresponding functions g~( ul, u2)

and gd( Ul, U2). The gate-source capacitance is described by

the conventional abrupt junction expression

– 1/2

cg(u1>u2)=co(l - ;) ~ (63)

The values of the zero-voltage capacitance and the built-in

barrier potential have been chosen as Co= 0.5 pF and

VB = 1 V, respectively.

Fixed bias conditions of Vlo = – 1 V and V20 = 4 V have

been assumed for all computations. Then, all parameters

could be evaluated as functions of a single variable, namely,

the voltage amplitude IVII. For each value of IVII, the F13T

load resistance R has been set to the value which maxi-

mizes the available power Pav. This optimum resistance
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Fig. 3. Drain-source current ch~acteristic used in the FET oscillator
example.

oo~o

ORIVE VOLTAGE AMPLITUDE 1’1I (Volt s)

Fig. 4. Optimum FET load resistance and associated available power as
a function of FET drive level.

ROPt and the associated power Pav are shown in Fig. 4. Up

to a drive level of IVll = 0.15 V, the FET operates under

quasi-linear conditions, as indicated by the constant value

of R ~pt. For higher drive levels, amplitude clipping of Vz

occurs and R .Pt rapidly drops to smaller values. The

available power P=, continuously increases up to about 50

mW for IVI I = 1 V. For voltage amplitudes IVI I >1 V,

forward conduction of the gate junction would occur for

part of a period.

The efficiency q = P,v/( VZOIZO), which is not shown

here, follows a similar but not identical characteristic as Pav

with a value of about 47 percent at IVI I = 1 V.
The normalized cutoff frequency fcn is depicted in Fig.

5. For all drive levels corresponding to useful values of Pav,

fcn is close to unity. If IVII is lowered and approaches the

critical value IYI I = 0.15 V, fcn decreases and finally drops

to zero, thus marking the stability boundary. For smaller

drive levels, fcn takes small negative values (not included

in Fig. 5) indicating that a stable oscillation is not possible.

Fig. 6 shows the two terms g~l/( gd21Vz[/ IVII – g~z) and

cgl/cg2$ which are part of (61) and (62) for the amplitude

and phase fluctuations. Typically, the latter expression is

much larger than the former one, except for drive levels

close to the stability boundary. Hence, with (62), the phase

I

CRIVE VOLTAGE AMPLITI.33E IV, I (Volts)

Fig. 5. Normalized cutoff frequency as a function of FET drive level.

100
V,o= -Iv

ho= L~
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gd2,’1, - 9“)2

1-

o,l~
0.2 O.L 0,6 0,8 1,0

DRIVE VOLTAGE AMPLITUDE IVI I ( Volts]

Fig. 6. Dependence of two Fourier coefficient related expressions upon
FET drive level.

fluctuations are approximately given by

Qo~gllJ’112/pav Vn
A+L=j ~ —.

Ivll

(64)

tio/2QL

It is evident from (61) and (64) that gml and Cg, are the

crucial Fourier coefficients for the amplitude and phase

noise, respectively.

Finally, Fig. 7 shows the resulting amplitude and phase

noise characteristics in terms of single-sideband noise to

carrier ratios in a l-Hz bandwidth. The curves have been

computed for a carrier frequency of 10 GHz and an offset

frequency of 10 kHz. The loaded Q of the resonator was

set to 50, and for the spectral density of the baseband noise

source a value of 10 – 14 V2/Hz was used.
There is a rapid increase of both amplitude and phase

noise close to the stability boundary, a property which is

common to all oscillators. Over most of the drive level

range, however, the curves exhibit contrary slopes. For

increasing IVI 1, the amplitude noise decreases towards a

steady-state value, whereas the phase noise continually

increases at an almost constant rate. As for most oscilla-

tors, the phase noise typically is several orders of magni-

tude higher than the amplitude noise.
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Fig. 7. Amplitude and phase noise of FET oscillator example as a
function of FET drive level.

Since the FET has been modeled in a very simple

manner, neglecting all parasitic elements, the numerical

results given above are not regarded as exact performance

predictions for a practical microwave oscillator. The main

purpose of this example was to demonstrate the capabili-

ties of the analysis technique and to illustrate some funda-

mental relationships. The application of the theory to

practical FET oscillators will be the subject of a supple-

mentary paper.

VII. CONCLUSION

The upconversion of low-frequency noise in microwave

FET oscillators has been analyzed. In its general form, the

described method can be applied to virtually all kinds of

FET oscillators. From a simplified version, closed-form

expressions for amplitude and phase noise have been de-

rived, which provide for a better understanding of the

physics of the upconversion process.

As a result of the analysis, the gate-source capacitance of

the FET has been identified as the nonlinear element which

is responsible for the conversion of low-frequency noise

into phase noise, whereas the amplitude noise is primarily

determined by the nonlinear transconductance.

On the basis of the theory presented in this paper, the

noise performance of practical FET oscillators can be

calculated and optimized with respect to device selection,

bias conditions, and circuit topology and element values.

It may prove to be particularly useful to investigate the

influence of the low-frequency circuitry on the oscillator

noise. An efficient technique to improve the noise perfor-

mance by means of a suitable low-frequency circuit ap-

pears to be very desirable, since the additional costs are

negligible and tb.e technique could be applied to fixed

tuned as well as to variable frequency FET oscillators.

First experimental results on the effects of the gate circuit

low-frequency resistance on the phase noise have been

published in [17].

APPENDIX

In contrast to the theory presented in this paper, the

analysis of Debney and Joshi [9] yields a nonzero expres-

sion for the oscillator phase noise, although only resistive-

type nonlinearities are taken into account. On checking

their paper, it was found that an improper application of

Kurokawa’s theory is the most likely reason for this result.

In the Kurokawa analysis, an RF noise source is as-

sumed with totally independent upper and lower side-

bands. Consequently, the spectral densities of the ampli-

tude and phase fluctuations may be computed separately

for each sideband of the noise source, and the final result is

obtained by simply adding the corresponding spectral den-

sities. This procedure is not allowed, however, if the RF

noise is generated by mixing a baseband noise signal with

the RF carrier. In this case, the two noise sidebands are

correlated and their contributions must be combined be-

fore the spectral densities are calculated. Otherwise, the

correlation would be ignored, which may lead to totally

erroneous results.

It seems that this point has not been considered by

Debney and Joshi, as is indicated, in particular, by (2), (3),

and

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(8) in their paper.
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Design Consideration for
Frequency-Stabilized MIC IMPATT

Oscillators in the 26-GHz Band

NOBUAKI IMAI AND KAZUYUKI YAMAMOTO, MEMBER, IEEE

Abstract —A 26-GHz frequency-stalbilized MIC IMPA’fT oscillator

using a dielectric resonator has been developed. In designing such an

oscillator in the high-frequency range, many parameters affecting frequency

stability should be considered. This paper discusses oscillation frequency

variations caused by deviations in the resonant freqnency of dielectric

resonators, in diode reactance, and in the electrical length between the

diode and resonator, SWof which are due to temperature variatiou. Design

criteria for a higfrty frequency-stabilized oscillator are atso presented. With

these techniques, we have ohtahred an MIC IMPATT oscillator with

frequency stability of less than +5.0x 10-5, outpnt power deviatiou of

less thau * 2.0 dB, and outpnt power of more than 23 dBm over the

temperature range of O“C to 50°C.

I. INTRODLJCTION

R ECENTLY, much attention has been focused on

microwave integrated circuits (MIC’S) for their com-

pactness and low cost. There have been many papers

concerning MIC mixers [1], amplifiers [2], oscillators [3]–[5],

and transmitter/receiver modules [6].

Frequency-stabilized oscillators are important compo-

nents for the practical application of MIC’S, and many

MIC oscillators using dielectric resonators have been devel-

Manuscript received June 7, 1984; revised October 30, 1984.

The authors are with the Radio Transmission Section, Yokosuka Elec-
trical Communication Laboratory, Nippon Telegraph and Telephone
Public Corporation, 1-2356 Take, Yokosuka-shi, 238-03 Japan

oped in both the microwave frequency range [7]–[11] and

higher frequency bands [6], [12].

However, to design frequency-stabilized MIC oscillators

in the high-frequency range, more detailed theoretical and

experimental investigations are necessary in order to over-

come the following problems.

(1) In higher frequency bands, the unloaded Q factor

(Qo) of dielectric resonators decreases, and frequency sta-
bilization becomes difficult.

(2) The resonant frequency of the resonator depends not

only on high dielectric constant material, but also on

substrate and surrounding materials, especially at high

frequencies.

(3) As the oscillation frequency increases, frequency

deviation becomes more dependent on variations in the

electrical length between the diode and resonator.

(4) To obtain a high-power, highly frequency-stabilized

MIC oscillator, circuit parameters (QO and VSWR) need to

be optimized.

This paper presents a method to overcome these prob-

lems, which facilitates the development of a highly

frequency-stabilized MIC oscillator. The first part includes

a discussion of resonant frequency deviations in the dielec-

tric resonator due to ambient temperature change, and

oscillation frequency variations due to changes in both the
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